Location and mobility of twin arginine translocase subunits in the Escherichia coli plasma membrane.

نویسندگان

  • Nicola Ray
  • Anja Nenninger
  • Conrad W Mullineaux
  • Colin Robinson
چکیده

The twin arginine translocation (Tat) system transports folded proteins across the bacterial plasma membrane. Two primary Tat complexes have been identified, comprising TatABC or TatA multimers, which may interact at the point of translocation. We have analyzed green/cyan/yellow fluorescent protein (XFP) fusions to each of the Tat subunits. We show that the TatB and TatC fusions are active and incorporated into purified TatABC complexes. Proteolytic clipping of the TatA-XFP fusion precludes a definitive conclusion regarding activity, but we do find that the full fusion protein is preferentially incorporated into the TatABC complex. A previous study has proposed that TatB and possibly TatC are localized at the cell poles, whereas TatA is distributed more uniformly throughout the plasma membrane. Here, we likewise show that TatA-XFP is primarily distributed around the periphery of the cell. However, whereas much of the TatB-XFP is found at the poles, quantitative imaging studies show that approximately half of the protein is uniformly distributed in the plasma membrane. Moreover, we show that the bulk of TatC-XFP is detected as a halo around the cells, in some cases as punctate areas that are much smaller than those occupied by TatB-green fluorescent protein (GFP), indicating a uniform distribution. No evidence for a polar localization of TatC-GFP was obtained. Although TatC-GFP is found correctly complexed with TatB, a high proportion of TatB-GFP is not linked to TatC, and we propose that this "free" TatB forms unphysiological assemblies, possibly because it is synthesized in excess. Since TatC is invariably complexed with TatB in wild-type complexes, the combined data demonstrate that TatABC complexes are uniformly distributed throughout the plasma membrane. The significance of the punctate TatA/B/C-GFP is unclear; fluorescence recovery after photobleaching measurements show that these pools of proteins are immobile, whereas nonaggregated proteins are highly mobile in the plasma membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The twin-arginine leader-binding protein, DmsD, interacts with the TatB and TatC subunits of the Escherichia coli twin-arginine translocase.

The twin-arginine translocase (Tat) pathway is involved in the targeting and translocation of fully folded proteins to the inner membrane and periplasm of bacteria. Proteins that use this pathway contain a characteristic twin-arginine signal sequence, which interacts with the receptor complex formed by the TatBC subunits. Recently, the DmsD protein was discovered, which binds to the twin-argini...

متن کامل

A subset of bacterial inner membrane proteins integrated by the twin-arginine translocase.

A group of bacterial exported proteins are synthesized with N-terminal signal peptides containing a SRRxFLK 'twin-arginine' amino acid motif. Proteins bearing twin-arginine signal peptides are targeted post-translationally to the twin-arginine translocation (Tat) system which transports folded substrates across the inner membrane. In Escherichia coli, most integral inner membrane proteins are a...

متن کامل

Export of complex cofactor-containing proteins by the bacterial Tat pathway.

The twin-arginine (Tat) protein translocase is a highly unusual protein transport machine that is dedicated to the movement of folded proteins across the bacterial cytoplasmic membrane. Proteins are targeted to the Tat pathway by means of N-terminal signal peptides harbouring a distinctive twin-arginine motif. In the model organism Escherichia coli, many of the Tat substrates bind redox cofacto...

متن کامل

Following the path of a twin-arginine precursor along the TatABC translocase of Escherichia coli.

The twin-arginine translocation (Tat) machinery present in bacterial and thylakoidal membranes is able to transport fully folded proteins. Consistent with previous in vivo data, we show that the model Tat substrate TorA-PhoA is translocated by the TatABC translocase of Escherichia coli inner membrane vesicles, only if the PhoA moiety was allowed to fold by disulfide bond formation. Although eve...

متن کامل

Substrate-Dependent Assembly of the Tat Translocase as Observed in Live Escherichia coli Cells

The twin-arginine translocation (Tat) pathway guides fully folded proteins across membranes of bacteria, archaea and plant chloroplasts. In Escherichia coli, Tat-specific transport is executed in a still largely unknown manner by three functionally diverse membrane proteins, termed TatA, TatB, and TatC. In order to follow the intracellular distribution of the TatABC proteins in live E. coli cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 18  شماره 

صفحات  -

تاریخ انتشار 2005